epsp and ipsp calculation

Ace your studies with our custom writing services! We've got your back for top grades and timely submissions, so you can say goodbye to the stress. Trust us to get you there!


Order a Similar Paper Order a Different Paper

The membrane potential, Em, of a post-synaptic cell can be calculated from the following equation:

 

equation in attachment

 

 

where grest is the leakage current which maintains the resting potential, Erest is the normal resting potential, gE is the conductance due to excitatory post-synaptic channels (e.g., AMPA channels), ErevE is the reversal potential for the excitatory channels, gI is the conductance due to inhibitory post-synaptic channels (e.g., GABA channels) and ErevI is the reversal potential for the inhibitory channels (this equation comes from the equivalence circuit discussed in Lecture 13 & 14, slide 21). Assume grest = 1 milliSiemens, Erest = -65 mV, ErevE = -10 mV, ErevI = -70 mV.

a) If gE at the peak of the EPSP is 2 milliSiemens, what is the height of the EPSP without an IPSP (i.e., what is the change in potential from resting)?

b) If gI at the peak of the IPSP is 1 milliSiemens, what is the change in potential from resting?

c) What is the sum of the peak IPSP voltage change and the peak EPSP voltage change?

d) What is the net change in synaptic potential when an EPSP and IPSP occur simultaneously? Why is your answer different from the simple sum of potentials in part c?

Writerbay.net

Looking for top-notch essay writing services? We've got you covered! Connect with our writing experts today. Placing your order is easy, taking less than 5 minutes. Click below to get started.


Order a Similar Paper Order a Different Paper